
ARI Research Note 88-85

An Overview of the Architecture for WE 1.0

(D" Paulette E. Bush, Gordon J. Ferguson, John B. Smith,
Stephen F. Weiss, Jay D. Bolter, and Marcy Lansman

University of North Carolina

for

Contracting Officer's Representative
Judith Orasanu

ARI Scientific Coordination Office, London
Milton S. Katz, Chief

Basic Research Laboratory
Michael Kaplan, Director

DTIC
ELECTED
OCT 13 .U

U. S. Army

Research Institute for the Behavioral and Social Sciences

September 1988 I
Approved for the public release; distribution unlimited. 19

88 10 11901

U. S. ARMY RESEARCH INSTITUTE

FOR THE BEHAVIORAL AND SOCIAL SCIENCES

A field Operating Agency under the Jurisdiction of the

Deputy Chief of Staff for Personnel

WM. DARRYL HENDERSON
ED)GAR M. JOHNSON (X)L, [N
Technical Director CoITmsIdiflg

Research accomplished under contract
for the Department of the Army

University of North Carolina

Technical review by
Accessiona For

Tracye Julien NI R&
DTIC TAB
11nanno uncd 1:

Avalability Codes

VI' ist Avai' and/or

IThis NePOM. as submitted by the contrctor. 9has been cleared fe' relcaic to Defirnse, Technical Iiformation center

(DTIC to copywt euaoyg-oei. it has bee gie no% priar distribution oibe tha to *

UNCLASSIFIED
,,., SECURITY CLASSIFICATION OF THIS PAGE

Form Approved

REPORT DOCUMENTATION PAGE OM No. 0704-OIM

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

2b DECLASSIFICATION / DOWNGRADING SCHEDULE Approved for public release;
- - distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

TR88-031 ARI Research Note 88-85

6a NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
University of (If applicable) U.S. Army Research Institute for
North Carolina I the Behavioral and Social Sciences

6c. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)
Department of Computer Science 5001 Eisenhower Avenue
CB# 3175, Sitterson Hall
Chapel Hill, NC 27599-3175

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMIGER

ORGANIZATION -I (if applicable) MDA903-86-C-0345
8c. ADDRESS (City, State, and ZIPCode) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO, ACCESSION NO.

*_6.11.02 B74F n/a n/a
11. TITLE (include Security ClIsification)

An Overview of the Architecture for WE 1.0

12. PERSONAL AUTHOR(S)
Pauline E. Bush, Gordon J. Ferguson, John B. Smith, Stephen F. Weiss, Jay D. Bolter(see 16)

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

Interim Report FROM 10-86 TO 10-89 1988, September 60
16. SUPPLEMENTARY NOTATION 12. Title (continued) and Marcy Lansman

*' Judith Orasanu, contracting officer's representative
17. - COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Computers
Cognition

19 Graphics
19 ABSTRACT (Continue on reverse if necessary and identify by block number)

..This researctwnote discusses WE, a graphics-based Writing Environment. It provides tools
to support the entire writing process, from brainstorming to document revision. Users visu-

* ally transform their ideas from a network to a hierarchy defining document structure.
The prototype system is written in Smalltalk-80, an object-oriented interpreted language.

This document presents the architecture of the WE version 1.0 prototype system. Sections
cover the high-level component layout, the class hierarchy, the flow of control, the support
framework, and the database support. Readers should be familiar with object-oriented
programming in general and Smalltalk in particular to understand the note completely.

* 20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21, ABSTRACT SECURITY CLASSIFICATION
* ~ UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. 0 DTIC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code)22c. OFFICE SYMBOL

Judith Orasanu 202/274-5590 BRO
I,,,

. DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
;- UNCLASSlIFI ED

Contents

1 Introduction 1

2 Overview of the System 2

2.1 Class Hierarchy 2

2.2 Flow of Control: the Wrist, Mode, Agent, model 5

3 The WE prototype Environment Code 9

3.1 The Controlling Classes 9

3.1.1 Wrist1.0 9

3.2 Support Classes ... 15

3.2.1 Drawingl.O 17

3.2.2 ToolBox 23

* 3.2.3 ToolBox-we 29

3.3 Database Construction .. 33

3.3.1 Database vs. Workspace 33

3.3.2 Databasel.0 34

3.3.3 Structures 45

3.3.4 File Support 53

4 Acknowledgments 54

5 Appendices 55

5.1 Roaming: Traversing an Infinite Drawing Space 55

5.2 Tracking: Recording and Replaying a WE session 55

6 Reference List 55

0

"" iii

List of Figures

I General System Structure. 3

2 Partial Class Hierarchy ... 4

3 High-level structure of WE: Wrist, Mode, Agent 6

4 WE "main program" .. 8

5 The Dictionaries kept by a NODE 39

6 The Single Dictionary Kept by an ARc 41

7 The Three Dictionaries Kept by a WDATABASE 44

8 WE STRUCTURES 51

Iiv

n

P-.. i

.

'5

S"I o

1 Introduction

WE is a graphics-based Writing Environment. Unlike many convertional document-preparation

systems, it is more than a word-processor. WE carries the user through the entire writing process;

from initial exploratory idea-generaton, through hierarchical organization, to the expression of ideas

in text, to editing both structure and expression, and, finally, to producing the linear document,

itself. The system is multimodal, providing different working contexts for the different tasks that

comprise the overall writing process. It was designed to conform to an underlying theoretical

perspective [Smith & Lansman, 1987] and to support a specific writing method [Smith & Smith,

1987]. However, it can be used by writers following a number of different strategies.

A key concept on which the system is based is that writers use different "cognitive modeb"

0 to carry out different tasks. A cognitive mode is a particular way of thinking in which different

* cognitive processes are used to create or to transform different coginitive (intermediate) products

in order to accompLsh a particular goal in accord with a certain set of constraints. Thus, for

example during early exploratory thinking, writers brainstorm, represent ideas, group them into

clusters, denote specific relations between pairs of ideas, and build small conceptual structures.

They frequently do so in a relaxed frame of mind in order to stress flexibility and originality. By

contrast, organization is a much more controlled way of thinking where writers build the actual

structure for the document to be written. WE provides four different system modes to support

four of the major cognitive modes used for writing: network mode for exploration, tree mode

for hierarchical organization, editor mode for writing, and text mode for revision. The system

also provides mechanisms for moving intermediate products created in one mode into another.

For example, writers can move a small hierarchical relation created in network mode into the

.%, hierarchical structure being built in tree mode. Thus, system architecture reflects the underlying

cognitive architecture of the user.

WE is being developed using the software engineeing methodology of rapid-prototyping.

* Smalltalk-80 was chosen as the prototyping language because of its power as a rapid.prototyping
!-.

language: the Smalltalk-80 system code provides a wealth of functionality as an application base
and its pure object-oriented construction and code interpreter capabilities give it much more versa-

...
*,°' 1

0•.:

j-A-'

tility and flexibility than the common procedural programming languages. WE is currently running

as a version 1.0 Smalltalk prototype. Design will continue in Smailtalk. Version 1.0 has been trans-

lated into Objective-C - a closely related language suited to large, high-performance, end-product

,p. systems. For a description of that translation process, see [Shan, Smith, & Ferguson, 1988].

This document de-emphasizes WE user-interface code in favor of discussing the "main-program"

classes, the tools, and the database components. These classes are relevant to other applications

and will give the new WE programmer a general understanding of the architecture of the system.

The reader of this document should have a general knowledge of Object-Oriented programming

and a working knowledge of the Smalltalk-80 programming language in particular. Some exposure

as a user to the WE prototype system is also helpful. A reference list of background materials

which cover prerequisite areas is included in the Appendices.

NThroughout this document, specific smalitalk category names are in sans serif, class names are

in SMALL CAPS, and method patterns are in italics.

2 Overview of the System

The use of an object-oriented programming language reduces the design discussion to oie of class

relationships, class knowledge, information hiding, and inheritance - a welcome built-in framework

for expressing design issues and one that lends itself nicely to discussion at varying depths. I will,

then, exploit this fact and present first an overview of the WE structure.

2.1 Class Hierarchy

*_ The bulk of the prototype code breaks down into five main units: the 'environment code' including

the 'controlling' category, 'support' categories, and 'database' categories and the user-interface

code including the control panel category (CP-1.0) and mode categories (Network-l.0, Tree-1.0,

Revise-l.0, Paragraph-l.0). A major version1.0 design decision was to include only four modes

- corresponding to four distinct phases of writing: Network Mode which allows a user to construct a

directed graph or clustering of ideas, Tree Mode which imposes constraints in allowing the user to

translate his ideas into a strict hierarchy (tree), Edit Mode which provides an editor for associating

-0 2

. . .

%-%

. ?I A ft "," A

-A,

text with single ideas, and Text Mode which allows the user to view and revise his document in its

final linear form. These four modes and the system as a whole are managed through a relatively

trim (compared to version 0) "control panel" Mode.

A, The environment code controlling classes WRISTI, AGENTI, MODE1 form the 'main program'.

WE is supported graphically by the drawing and toolbox tools and conceptually by small 'glue'

classes referred to as utilities (and kept in the Utilities category). A document itself is seen by WE

as a 'databas e' - a large information set whose structure preserves the relajionships intended by

the user. WE's skeletal structure is shown in Figure 1. The strict hierarchy of the classes discussed

in detail in this document (and the four WE mode classes) is shown in Figure 2 where classes are

represented as rectangles whose relationships to one another expose subclass relationships.

A'

terminal

Tool Box
Drawing Package

~- Control Framework

System Application Database

Superclasses Subclasses

* Figure 1: General System Structure

A'.

%

* 3

% 0
A-'.%
O.'' • ' A . * --

CONTROL module DATABASE module

Object __________ Object O~jc
Agent I bjc

TolmnuBar WDjtbaseJ A I

Moe TA~eol~ent StutrsAtute

Cp1Node

I~de _________________ I ciI Dimension

Net~dell Revie~od I W~th ~uc~lmensi

j ~ o d e TrI String oim en ,in

EH] IdEmension

TOOLBOX module DRAWING module

IObject Object

Tol~nu inoin Infrmto
Lj ooIedten We~astoationAnd~ Ip
Tou~r~or Tools J DrawnObject

TciTheBlan THolousZ jran~njj Orawingl a

Toe~s Tootifier DrawRect J nc~awnmi

Too~col Tol*Iy raText

Figure 2: Partial Class Hierarchy

%

2.2 Flow of Control: the Wrist, Mode, Agent, model

A main goal which motivated the control structure of WE was "vertical integration" - a direct

mapping between the concepts on one level and their implementation on the level below. The

= freedom to represent conceptual objects by actual "objects" in smailtalk is one of the foremost

strengths of smalltalk and object-oriented languages in general. Once system design concepts are

stable, one can listen to discussion about the behavior of the desired system and pick out the "ob-

jects" - the nouns. These nouns can and often should then become objects in the implementation.

This mapping of a complete conceptual system into a complete object family (nouns with defined

relationships to each other) is an art - a process for which there is yet no algorithm. The real

system will only be as good as this original mapping which determines its conceptual integrity.
', WE is a system of structured pictures - a directional graph of ideas in one window, a strict

hierarchy in another window, a text editor in a third window, and a series of text editors in the

V! forth. The three big nouns are: Wrist, Mode, Agent. They represent three layers of abstraction.

An "Agent" is any visual object on the screen (e.g. a directional link in the idea graph, a "node"

of the hierarchy picture). A "Mode" is a window. WE has four modes: Network Mode containing

the idea graph, Tree Mode containing the hierarchy, Edit Mode containing a text editor, and Text

Mode containing a series of text editors. The "Wrist" is the environment controller and manages

system-wide communication. These three nouns are mapped directly into superclasses in smailtalk;

each specific mode is a subclass of the MODEl superclass and each specific visual object within

the modes is a subclass of the AGENT1 superclass. There is only one Wrist instantiation. This

- "3 controlling superclasses" structure facilitates code sharing, enforces consistency (tightness of

-, . concept), and lays down specific structure skeletons at a high level. Two other advantages of this

* structure, portability and flexibility, are extremely important to a prototypP system.

The high-level structure of WE is shown in Figure 3. The arrows indicate the possible directions

4" of communication.

There are two important features to notice here: 1) Modes cannot directly communicate with

each other and Agents cannot directly communicate with each other. 2) The database (the user's

document itself) cannot communicate with anything but the external file system - it knows nothing

about who is using it. This second point really becomes an advantage when one considers the future

•- ., ,

0%

xz5

0.-

'1 --.1oo.Y ,.. f J -

W aa aeMod
s rs Mod e l ot~Structure

AetAgent SAN

F file systemn

" Figure 3: High-level structure of WE: Wrist, Mode, Agent

" goal of parallel multiple-user access to the database. A loose exception to the first point is the fact

~that modes can be coupled together on certain messages in the sense that the message is sent to

~them both at once.

i' The main characteristics of tihe subclasses of the 3 controlling superclasses are as follows:

' . Wrist - "creates" the environment by initially laying out the modes, does system initialization

and termination tasks, drives the WE session, -,ad uses a single database at any given time. Because

,. .it coordinates the modes, one can think of it as managing a set of structures (which make up a

e . workspacc).

, Mode - uses an assigned area of the screen (a window) to present a structure to tie user. It

' ' "is binary (can be either active or inactive at a given time). Only a single mode can be active at

.7 any given time. A mode maintains a list of its own agents and responds to the agentFor: aPoint

%'. message - given a point in space, it answers its corresponding agent.

"-'- Agent -represents a single visible object (typically at node or link). It can be "inv'oked" which

• means that a relevant operation-choice menii appears for the agent. Agents respond to the React-

, sTo: aPoinzt message, giving a boolean answer to the question of whether a given scr,-~n coordinate
.6

;.

(mouse position) is in its area.

A WE user successively activates modes, invokes agents, and carries out discrete operations

, . (presented as agent menu choices) until the end of the WE session. The pseudo-code "main

'"e program" is shown in Figure 4.

*.i~

-S.

-.)

..
K-

.5.-

..

WRIST

self use the given database and begin;

self create and display all modes;

self run
[while not at the end of the WE session

poll modes and find one that both contains the mouse and is not hidden;

activate the mode

self terminate;

(close down each ode and release everything)

MODE (activate)

while not at the end of the session

[do I contain the current mouse point?;

if so, poll my agents;

pass control to my agent containing the mouse point;

(self agentFor: mousePoint) invoke.

if not, is user pressing the mouse tton in another mode?

if so, put me to sleep and ret rn control immediately to the wrist

if not, { no button is being p ssed, but the mouse point is in the mode

continue looping]

AGENT (invoke).,E

Is a mouse button pressed?

If so,

start up my menu on me.

ToolMouse anyButtonPressed if'lie: [self class menu startUpOn: self]
a

Figure 4: WE "main program"

r 8

",

,0

3 The WE prototype Environment Code

The "environment code" consists of the controlling classes (WRISTI, MODE 1, AGENT1), support

classes, and database classes. Each of these classes is briefly discussed below with emphasis on

class knowledge and information hiding. The limits of a class's knowledge space are defined by

its variables which are its "information holders" and its methods - its capabilities. Thus, each

presentation consists of a layout of class variables and instance variables and a short discussion

of the important class and instance methods. In the case of some small, simple classes, variables

-, and/or operations are not specifically discussed. The remainder of the WE code - the "user-

interface code" - is not covered, although one will be well on his way in understanding the "user-

interface" design when he grasps the environment code which is its foundation. For fine details,

the programmer should read the well-documented smafltalk code itself. Examples are included in

* the code for most classes.

3.1 The Controlling Classes

As discussed above, three superclasses embody the main control loop of WE: WRISTI, MODE1,

-" and AGENT1. In short, WRIST1 is the driver, instances of MODE1 are the windows, and instances

-. of AGENTI are the visual objects which the user sees on the screen.

3.1.1 Wristl.O
'A

'A The Wristl.0 category contains WE's three 'main' classes: WRIST1, MODEl and AGENT1.

* WRIST1

The WRISTI class is the driver. Remember, it has only one instantiation per WE session.

Class Variables:

* CurrentDatabase -always points to the current database. It is used in "resuming" work (self

startaNewOn: CurrentDatabase empty: false). Because it is a class variable, it holds the

database even through crashes to smatalk. (WDatabase)

- 9
-'

a.

;%

6

Running - true if WE is running, false if not (i.e. Running is false when one is programming

in the smalltalk environment under WE). The smalltalk Object class uses this variable to

know how to handle smalltalk errors: a non-standard error box is used during a WE session.

(Boolean)

TexOptions - provides TeX equivalents for WE symbols. (Dictionary)

Instance Variables:

database - the object which holds the user's current document (layout in WE). CurrentDatabase,

the class variable mentioned above, is always the same as this instance variable, but is needed

because the resume message must be sent to a class. (WDatabase)

activeMode - the currently active mode. (Model)

modes - all modes. (OrderedCollection of Model)

nodeStack - holding area stack for copied nodes. (WeStacki)

structureStack - holding area stack for copied trees. (WeStackl)

- ec.M

-,validModes - all modes which have been refreshed since the last database change. (Set of Model)

'r , . inValidModes - all modes which have not been refreshed since the last database change. (Set of

Model)

couples - a record of menu option commands shared by two or more modes. This record facilitates

444" communication between modes. (Dictionary of Symbol (selector), Set of Model)

count - helps the wrist to keep track of new names for text files. These unique file names are of

the form wOlxxx where xxx is the current value of count. count is incremented to provide

the next unused file name. (Integer)

- promptForWrite - true when the user wants to be asked before text is saved. (Boolean)

dbChanged - true if database has been changed since the last save. (Boolean)

* 10

- -'.-

traceTree - a pointer to a structure which records the WE session for later analysis. (not used in

this version). (TrackingTreeShell)

laserWriter - the name of the laserwriter to be used (can be set interactively). (String)

linePrinter - the name of the line printer to be used (can be set interactively). (String)

outFileName - If the autoSend toggle is off, the outFileName is used to indicate the TeX file 'out-

FileName.tex' or the line printer file 'outFileName.line' into which WE will dump a document

sent to a laser or line printer respectively. Its default is 'WEtoPrint'. (String)

autoSend - true if printouts are to be sent directly to the appropriate printer, false if printouts

are to be held in a file. (Boolean)
,p

Class Operations:

" instance creation. One instance of Wristi exists for an entire WE session (created by star.

taNewOn:empty:). If the user drops back to smalltalk at some point, the wrist must be

"restarted" by the resume message.

-" management of the three class variables. There are class methods to create the TexOptions

dictionary, to explicitly release the CurrentDatabase, and to maintain the Running boolean

and its related error catching directives.

Instance Operations

e handling the details of session control. The wrist initiates, runs, and terminates the WE

* session (initiate, run, terminate). It also controls the details of allowing the user to stop work

on one document and begin work on another (now Use:, continue With:).

management of and access to the instance variables. This includes maintaining lists of the

* currently valid and invalid modes, keeping track of the state of the database, managing the

holding area stacks, and keeping the printer specifications.

* 11

'F.

-'4

4.--!
e4 -.,. ,. - , - * , -- ' > .' '.-' ',. -,.° ..- ' ' .- , - \. '% - . . . "-",. ,,.,¢ , .. .50 " " *o " q, ° - " . " .' " ... ' / -t "" . . '' ' '' . '' . ' . ' ' '' . * . ' '. .' ' .'

" handling communication between the modes. This includes 'broadcasting' messages to coupled

modes and keeping track of the currently active mode.

" redrawing modes when one mode's size is changed or when the user explicitly requests a

redraw of the entire screen.

" doing the extensive initialization required upon instance creation (startaNewOn:empty:).

" giving out unique file names for text files when requested (newFileName).

MODE1

Subclasses of MODE1 are "windows" in WE. Each handles a structure and is responsible for its

basic drawing and layout. When modes are "active", their primary function is to find the agent

responsible for handling the current situation and then to pass control to that agent. MODEl also

provides the standard mode menu bar for all its subclasses along with the support of the available

standard menu options including the management of size switching.

Class Variables:

LargeWindow - a default size specification for a "large" window (one that fills up most of the

screen). This variable is set in the class initialize method and used as the default when

switching sizes. (Rectangle)

MenuBarHeight - the default height (in pixels) of the standard mode menu bar (see class Tool-

MenuBar). This variable is set in the class initialize method. (Integer)

Instance Variables:

displayArea - the actual complete mode window (including the standard menu bar area) in screen

coordinates. (Rectangle)

agents - a collection of all agents in the mode. The mode polls its agents by searching this list

(agentFor: aPoint). (OrderedCollection)

S"12

A R

backgroundAgent - the agent representing the background of a mode. It is a "default" agent

which gains control if no other agents in the mode want control. (Agent1)

drawing - the object which represents the visual mode space excluding the standard menu bar

area (a subdrawing of modeDrawing). (DrawinglO)

status - the flag which is used in the main WE control loop ((Model) activate, and (Wristl) run).

It can take on a value of #active, #sleep, or #quit depending upon the state of the mode.

(Symbol)

field - an object which holds the generic characteristics which apply to agents in this mode (i.e.

x and y position, title, etc.). Each of these characteristics is itself an object of type Dimen-

sion and is duplicated in a dictionary kept by the database in an instance variable called

"dimensions". (WField)

prinStructure - the principle structure handled by a mode. For example, the principle structure

of Network Mode is a WNETWORK, and of Tree Mode is a WTREE. These structures are

subclasses of class STRUCTURE. (Structure)

wrist - the Wristi instance which controls the WE session and acts as the mode manager. (Wristl)

currPos - the screen coordinate of the most recent 'interesting' event (i.e. the position of the last

mouse click). (Point)

menuBarAgent -the object representing the standard mode menu bar at the top of the mode's

display area. (ModeMenuBar)

* modeDrawing - the object which represents the drawing of the entire mode (including the stan-

dard mode menu bar area). (Drawinglo)

variableTitle - arbitrary string under program control. Currently in WE, it is the user-given

* name of Lhe structure being viewed in the mode. (String)

windowControl - a utility object which keeps up with large and small window sizes for 'switch-

size' toggling, and manages explicit resizing of the mode. (WeWinPack)

0

13

%-.

-:'I:

"I'

4.. viewport - an aid in managing the drawings representing the mode. It represents the entire area

taken up on the screen by the mode (including the standard mode menu bar). viewport is

only used to inform the mode (re)creation method of the change in mode size due to a switch

size or resize command. (Rectangle)

Class Operations:

" instance creation. Model specifies a standard mode creation method (principleStrvc-

ture:field:displayArea:) which is used by all of its subclasses either solely or in addition to

a subclass implemented creation method.

k" initialization of class variables.
4'

• Instance Operations:

" agent polling -passing control along, activate, a method vital to the 'main-program' loop.

passes control from the mode to its agent that currently contains the cursor.

* managing the mode's visual area on the screen. This includes altering the menu bar appear-

ance when the mode is "invalid" and allowing the user to interactively change the mode's

size.

" sending the mode's structure contents to a file in a format suitable for a line printer or a

laserwriter.

" access to and management of the instance variables.

AGENT1

Subclasses of AGENT 1 represent the visual objects in a structured picture (i.e. nodes in Network

Mode, links in the Network Mode, menu bars, etc.). When the user points at a visual object with
0

the cursor, the object is selected and the agent is invoked. Most agents ignore the invocation unless

the mouse button is pressed. If the button is pressed, a menu (specified in the particular subclass

of AGENTI and held in a class variable of this subclass) specific to the kind of object (subclass of

.140 14

_5'

, i

%P

AGENT1) is displayed. The user makes a selection which is communicated to the particular agent.

That agent executes the associated method, then passes control back to the mode which continues

polling (the next agent is invoked - see Figure 4).

Class Variables: none

Instance Variables:

drawing - the object representing the agent graphically form on the screen. (DrawinglO)

subject - the database object that the agent represents. (Object)

mode the MODEl instance which created the agent and now manages it. (Model)

'

Class Operations:

e instance creation. AGENT1 specifies a generic creation method which most subclasses use

(for:mode:drawOn:).

Instance Operations:
'.

S * starting up a menu on the subject to allow the user to perform operations on it (invoke). This

method is part of the main control loop of WE.

* * field requests as to whether the agent is in charge of a certain given screen coordinate (reacts To:

:', aPoint). The mode uses this method (part of the main control loop of WE) in polling its
U'..

agents.

* access to and maintenance of the instance variables.

3.2 Support Classes

V WE must repeat certain small tasks so many times that it becomes advantageous to subdivide,

define, and refine these tasks into "tools" which can be used by the system easily, naturally, and

* 15

-. :1:,! A.

quickly. Thus, WE contains a "drawing package" that provides graphics primitives (i.e. lines,

rectangles, text) and a toolkit that contains both tools which prompt the user for information and

tools which ease and supplement the execution of operations within the system. These "supporting

classes" form a kind of storeroom of functionality available to the WE environment code.

,16

% % lo

4..VI 3LI

3.2.1 Drawingl.0

DRAWING10

DRAWING10 is the base class for grapb'cs in WE. A DRAWING10 has two basic components: 1)

a list of DRAWNOBJECTS - the lines, text, filled rectangles etc. to be displayed and 2) a list

of sub-drawings. A drawing is really a tree of drawings; the root of this tree is an instance of

. ',. ROOTDRAWING10 and the other nodes are instances of DRAWING10. The parent of a node is also

called its host. Each DRAWING10 has a local coordinate system offset from its host's. All drawings

are the same scale as their parent. Actual display is done by tree traversal of the drawings's

contents - lines, text, rectangles etc. Drawings axe nested and all display is clipped to the host's

viewport.

The draw,-g options (background and foreground color, line style) are handled with special logic

" - they are bundled into the WEDRAWINGOPTIONS class. There is a default WEDRAWINGOPTIONS

instance for the DRAWING10 class. Drawings either inherit the options of their parent or use a

local set. If they inherit, then their 'options' variable is nil. Inheritance of options (as specified in

the design) saves on space for drawings. Most drawings inherit options and require only the singlei.

nil pointer to record this.

Class Variables:

DefaultOptions - an object that holds the default drawing options for parameters like color,

line style and text style. This default is set up in the DRAWING10 initialize method. (We-

DrawingOptions)

* Instance Variables:

parent - the host drawing. (DrawinglO)

offset - the distance from this particular drawing's origin to its host's origin, offset is expressed

in terms of x and y distances. (Point)

extent - the size of the drawing expressed as width(x) and height(y). (Point)

* 17

V

,-r

subords - a collection of all subdrawings of this drawing. (OrderedCollection)

contents - the collection of the actual graphical objects which make up this drawing. (Ordered-

Collection)

outlined - true if the drawing is outlined. (Boolean)

subject - the database object which this drawing represents. Access to this information is neces-

sary because many times drawings are used as 'indexes' for deciding whether an agent reacts

to a given point or not - it does react if its drawing contains the given point.

options - a collection of drawing options which can be set to nil to adopt the default options (see

the class variable, DefaultOptions). (WeDrawingOptions)

Class Operations:

6• o instance creation. Drawingl0 has two methods for creating a new drawing (which must by

definition be a root drawing): createAt:, and displayBox:viewport:.

o setting up the default drawing options.

Instance Operations:

o instance creation. The method subDrawingAt: creates an instance of DRAWING10 which is

to be a subdrawing of the receiver drawing.

o managing the drawing options (e.g. background color, line style, text style).

o switching the outline toggle and creating graphics primitives (lines, texts, and rectangles).

* erasing and deleting the whole drawing tree or erasing and deleting single elements of the

drawing tree.

a displaying itself on the screen - clipped or unclipped (see display and displayIn:).

o access and management of the instance variables having to do with the position of the drawing

on the screen.

18

6

• o-*.k./ ~*

* transforming given points from drawing coordinates to screen coordinates and vice-versa.

a responding to the containsPoint: message - essential to the part of the WE main control loop

which deals with successive agent invocation.

- moving itself to another screen location.

e accessing the tree of drawings.

e "indexing". association of a database object with the drawing. The database object becomes

the subject (see instance variable, subject) of the drawing. A DRAWING10 can also return

the appropriate drawing and/or subject for a given screen point.

ROOTDRAWING 10

" As a subclass of DRAWING10, a ROOTDRAWING10 is simply a special kind of DRAWING10.

Specifically, it is the DRAWING10 that is at the root of a tree of drawings. Its capabilities are

the same as those of DRAWING10 with the exception of the reimplementation of some methods

because of this drawing's unique place in a tree of drawings. Its host, for example, is always nil

and it answers in the affirmative when asked if it is a root drawing. It has one instance variable,

displayBox, that holds its viewport in screen coordinates. It has no class variables of its own.

DRAWNOBJECT

Each member of the 'contents' orderedCollection of an instance of DRAWING 10 is a DRAWN OB-

JECT. A DRAWING10 is displayed by displaying each one of its 'contents' in turn. (In the same way.

a DRAWING10 which represents a tree of drawings is displayed by rendering each content of each'.

DRAWINGI0 tree node.) Thus, the graphical objects that the user actually sees on the screen are

instances of DRAWNOBJECT. All subclasses of DRAWNOBJECT work with a pair of points. These

points are used in various ways; typically they define the origin and extent of a rectangle specifying

an area for drawing in local coordinates. This rectangle marks the border of a drawn rectangle

* or the composition rectangle for text. Alternatively, the two points can mark the endpoints for a

drawn line (contained in a virtual rectangle). All subclasses of DRAWNOBJECT can actually draw

,1,'., themselves on the screen.

0 19

0

S.%

Class Variables: none

Instance Variables:

origin - the origin of the rectangle in the coordinate system of its parent drawing (local coordi-

nates). (Point)

extent - the width and height of the rectangle expressed in terms of x and y relative to the origin

point. (Point)

color - the color of the rectangle expressed as a numeric code. (Integer)

lineStyle - the size (thickness expressed in terms of x and y) of the "pen" used to draw the

rectangle. (Point)

Class Operations:

e instance creation. origin:extent:

Instance Operations:

e management of and access to the instance variables.

DRAWN LINE

DRAWNLINE is the subclass of DRAWNOBJECT for lines. A DRAWNLINE keeps track of its size

and color and its position in its host drawing. It knows how to draw itself.

Class Variables: none4

* Instance Variables: none

SClass Operations:
4

, instance creation. Given the two endpoints as parameters, the from:to: method creates an

instance of DRAWNLINE which represents a line connecting the two points.

I20

I

Sl.

Instance Operations:

0 drawing the line on the screen.

, responding to the direction message by answering its direction (north, northeast, west, etc.)

with respect to a standard cartesian coordinate system.

DRAWNRECT

DRAWNRECT is the subclass of DRAWNOBJECT for rectangles. A DRAWNRECT keeps track of

its dimensions, color, drawing style (outlined or painted with a color), and its position in its host

drawing. It knows how to draw itself. Note that a DRAWNRECT may be outlined or filled, but not

both.

Class Variables: none

Instance Variables:

filled - true if the rectangle is to be filled with color. (Boolean)

DRAWNTEXT

DRAWNTEXT is the subclass L DRAWNOBJECT for text. An instance of DRAWNTEXT is a

rectangular region filled with text. A DRAWNTEXT keeps track of its dimensions, color, text style,

and its position in its host drawing. Unlike the other DRAWNOBJECTS, it cannot be scaled. It

knows how to display itself.

Class Variables: none

Instance Variables:

textStyle - the style of text expressed as a numeric code. (Integer)

* text - the string of characters which the DrawnText represents. (String)

* 21

0"

WETRANSFORMATION AN DCLIP

WETRANSFORMATIONANDCLIP supports translation and scaling for DRAWING10. It is a sub-

class of the Smalltalk class WIN DOWINGTRANSFORMATION. It adds support for a clipping rectan-

gle.

Class Variables: none

Instance Variables:
V

clipBox - the rectangle (given in local coordinates) to which the DRAWING10 should be clipped

after transformation. (Rectangle)

S22

.. . . 6 I . N

S.

':I,

V.,

3.2.2 ToolBox

Classes in the ToolBox category are the tools which support the interface between the user and

the system. Tools exist for monitoring cusor movement and mouse button action as well as for

. informing and prompting a user.

TOOLCURSOR

TOOLCURSOR is a class that manages and provides cursors. All cursors used in WE are held

in class variables of TOOLCURSOR. Also, a user may define a cursor not already in the system.

An instance of TOOLCURSOR is a single cursor. The cursor itself is assigned to the instance

variable 'cursor'. The cursor's offset - its sensihive point - is kept in the instance variable 'offset'.

TOOLCURSOR is dependent on the smalltalk system class, CURSOR.

There are three ways of obtaining a new cursor: 1) by calling one of the system cursors or 2)

by explicit definition or 3) by creating one from a 16 by 16 FORM. A cursor is (and must ALWAYS

be) a 16 by 16 bitmap.

TOOLCURSORs can be used as new "permanent" cursors or they can be shown while a given

code block is executed or while a given code block is true by using the makePermanent, show While:

aBlock, and show While True: aBlock methods respectively.

A class method that returns the current cursor (currentCursor) is provided to facilitate saving

the current cursor so that it can be reinstated later.

TOOLMOUSE

TOOLMOUSE allows access to mouse button status and cursor position. It is really just an

interface for WE to the smalltalk system class INPUTSENSOR. Thus, TOOLMOUSE has no instanceo0s
methods of its own. The only difference between TOOL MOUSE and INPUTSENSOR is that in TooL-

MOUSE the three mouse buttons are referred to as left/middle/right, wheras in INPUTSENSOR, they

are referred to as red/green/blue.

* "Sensor", a system global variable, is an instance of class INPUTSENSOR. TOOLMOUSE passes

-.. along all its messages to this object, so the real implementations of the methods are in INPUTSEN-

"- SOR instance methods.
"4'.

23

..
.%" ~'~a4 4 4 ~ '. a ~ . '

* TOOLMOUSE capabilities fall into three groups:

1. positioning - mousePoint, mousePoint: A user can find out the current cursor position and

set the current cursor position.

2. testing - anyButtonPressed, noButtonPressed, leftButtonPressed, middleButtonPressed, right-

ButtonPressed. A user can recieve boolean answers as to the specific state of the mouse buttons

at any particular time.

3. waiting - waitButton, wait ClickButton, wait ClickLeftButton, waitNoButton. A user can direct

the application to wait for certain mouse events to happen before continuing.

These capabilities allow the user to "program" the mouse buttons to affect his application in

prescribed ways. WE, for example, is programmed to make no distinction between the three mouse

buttons - it is essentially a "one-button" application.

0 TOOLNOTIFIER

A TOOLNOTIFIER can be used to present short pieces of information to an application user.

The information appears as a text string in a white rectangle on the screen. One may easily

specify the position on the screen where the message is to appear. One may create an instance

of TOOLNOTIFIER that will be an object to be reused many times (using message), or one may

request that a certain message be shown only once at the mouse point and then erased (using

show:). Note: TOOLNOTIFIER is dependent on WE class DRAWING10.

Class Operations:

* instance creation. as specified in the above paragraph

Instance Operations:

* displaying. The ToolNotifier can be shown at a particular point on the screen.

a erasing. The ToolNotifier can be erased from the screen.

24

"

4/2.

S

ToOLYEsNo

A TOOLYEsNo can be used to ask the application user a yes/no question. It returns a boolean

answer. A TOOLYEsNo appears on the screen as a three-part rectangle. It contains a question,

and an actual Yes box and No box. The Yes and No boxes can be activated with a mouse click to

indicate user choice. TooLYEsNo is dependent on WE class DRAWING10.

Class Operations:

* instance creation. The TOOLYESNO only requires the intended question, a string of charac-

ters, for creation (question: aString).

Instance Operations:

* displaying. One may show a TooLYEsNo on the screen at a particular screen coordinate
$

location (displayAt: aPoint). The TOOLYESNO erases itself and returns the appropriate

boolean answer when the application user responds.

TOOLFILLTHEBLANK

TOOLFILLTHEBLANK is used to acquire a string from the application user. It is an interface

to the smalltalk system class FILLINTHEBLANK. Thus, it has no instance methods of its own.

A TOOLFILLTHEBLANK appears on the screen as a two-part rectangle. It contains a question or

prompt of some kind and a small editor which accepts an input string. The application user's

response is returned from the tool as a string.

Class Operations:

e instance creation. One can specify up to three parameters for a TOOLFILLTHEBLANK: a

message string, an initial answer, and a screen coordinate at which to display the tool. The

message string is required, but defaults will be used for the initial answer and screen coor-

* dinate if they are not specified. So, the most specific form of creation is message: aString

initiaLAnswer: answerString displayAt: aPoint.

* 25

0%

Instance Operations: none

ToOLMENU

ToOLMENU supports the definition and control of pop-up menus. TOOLMENUs hold lists of

application operations. These operations correspond one-to-one with application messages. When

an application user selects an option from the menu, the corresponding message is sent immediately

to the object which the menu was "started up on".

Class Operations:

e instance creation. One defines a menu with labels, separation lines, and selectors. Labels are

the actual 'choice words' (usually each referring to an application operation) which appear

on the visual menu. Separation lines are simply specifications of positions in the menu where

* Vblack, horizontal lines should be shown between choice words. Selectors, one per label, must

* ibe the names of existing application messages. Messages from a single menu must belong to

the same class and may not have any arguements. It is not possible to include messages from

different classes in a single menu selector list. The basic instance creation message, then, is

label: aString lines: anArray selectors: selArray.

Instance Operations:

* displaying. startUpOn: anObject displays the menu and sends the message associated with

the user's selection to anObject. anObject can be anything that understands all the messages

in the menu's selector list.

TOOLLIST

ToOLLIST is a general tool that presents a list of objects, allows the user to select one, and then

pops up a menu from which the user can select an operation to perform on the selected object. The

choice objects are sent to the tool in an ordered collection along with a message that each object

* understands (usually one which returns the name of the object). The objects are represented in

the list by the strings which they return upon receiving the message. TOOLLIST also has a title

. bar and a menu for operating on the titlebar's associated object.

* 26

"-

Class Operations:

9 instance creation. One can specify up to eight parameters for a TooLLIsT. The creation mes-

sage is size: aPoint onList: anObjectList mesg: aSymbol menu: aMenu titleObject: anObject

titleMessage: a2Symbol titleMenu: a2Menu. The parameters are (respectively): a screen co-

ordinate at which to place the tool's upper left-hand corner, a collection of objects to include

in the list, a message to send to each object to get its representation string, a list menu

(optional), an object for the title bar, a message to send to the title bar object to get its

representation string, and a title bar menu (optional).

Instance Operations:

a controlling. One activates a TooLLIsT by passing it control (takeContro). A TOOLLIST

displays itself on the screen, allows the application user to select an object and activate a

menu on that object, and then erases itself from the screen.

TOoLLIST is the most adaptable tool in the ToolBox. In WE, for example, it is used both as

a selection tool for changing workspaces and as a visual stack and stack manager for the holding

area stacks.

TOOLSCROLL

TOOLSCROLL supports creating, displaying, and reading of vertical scrolbars. A TOOLSCROLL

knows nothing about the window it is associated with. Window content information must be

provided by the application programmer at a higher level. TOOLSCROLL is less powerful than the

smaltalk system scrollbar because the application programmer must handle its control sequence

* and the actual moving of the window contents (a specific message is sent to the class to accomplish

this). However, TOOLSCROLL has the advantage of being system independent.

Class Operations:

e instance creation. create (no parameters are required).

* 27

-4

%°~

Instance Operations:

* accessing. Methods exist for getting information from a TOOLSCROLL which may be essential

for the application programmer to manage its control. The position of the window contents

of the window associated with the TOOLSCROLL can be set (top:visible:).

* activating. One can pass control to a ToolScroll.

428

0

-

4O

0 2

I

3.2.3 ToolBox-we

The tools discussed above are generic information-retrieving tools which have wide application

in some form in general graphical interactive systems. In contrast, the tools in the ToolBox-we

category are more specific to the Writing Environment. They are dependent on other WE classes.

They are extras that aid in the fine tuning of WE. Still, they may be helpful in general graphical

*applications.

TOOLMENUBAR

Visually, a TOOLMENUBAR is a strip of titled areas each of which presents a pull down menu

when activated. WE uses subclasses of TOOLMENUBAR both for session control as its Control

Panel and for mode control as a standard in each of its four modes. TOOLMENUBAR is a subclass

of AGENT1; an instance is created in a drawing and associated with a mode. All specific capability

Iis implemented in subclasses.

Class Operations: There are no class methods - therefore, superclass instance creation methods

are used.

Instance Operations:

Sactivation. Because it is an AGENT1, a TOOLMENUBAR can be invoked (invoke). Within the

main control flow in WE, this invocation happens when the mouse point is inside the menu

bar's area. As with any AGENT1, when a TOOLMENUBAR is invoked its associated menus

become available to the user.

4 TOOLHELPEDMENU

ToOLHELPEDMENU adds help to its superclass, TOOLMENU. When a WE user selects a menu

option with the system 'command key' pressed, a help message specific to the option selected

appears in lieu of the operation execution. In smailtalk on the SUN, the magic key is actually a
4

combination: both the 'left' and the 'Shift' keys must be pressed together. A TOOLHELPEDMENU

-" holds an appropriate set of help strings. It overrides the TOOLMENU startUpOn: message to test

for a help request.

29

5,

S

4"i" ,-". ,"==",,-. ."% " , . ","% " '-" % "*" , . ,,-.-.-. ' .. ,...-.- - ' ' " ,.,.-. ,=- . ,. """ . " . ''•.. " ' , .

Class Operations:

e instance creation. TOOLHELPEDMENU uses its superclass's creation method with one addi-

,* tional parameter: the array of help strings.

*Instance Operations:

e displaying. Like a ToOLMENU, a TOOLHELPEDMENU can be 'started up on' an object

(start UpOn:).

TOO LGHIOST

TOOLGHOST draws a 'ghost line' between two given points. A 'ghost line' is a line which is

drawn by reversing each pixel that will be covered by the line. This capability is especially useful

in WE for drawing links in the Network Mode; as the WE user is moving the mouse to select the

end node for the link, the link is successively drawn and erased with TOoLGHOST. This gives the

desired effect of a pulsating, faint guideline.

Class Operations:

* instance creation. TOOLGHOST requires at least two parameters: the two line endpoints. A

clipping rectangle is an optional parameter. Thus, the most specific instance creation method

is from: aPoint to: aPoint clip: aRectangle. Extra methods which make stars from ghost

lines are also included. These methods draw lines from a given point p0 to each of the points

in a collection (starFmm: pO to: aCollection). Here again, a clipping rectangle is optional.

* Instance Operations: none

*. --, TOOLGETRECT
.

TOOLGETRECT is simply an interface between WE and the smalltalk system class RECTANGLE.

03

• 30

.5

4

Class Operations:

e return a rectangle specified by the application user. The get message gives the application

user a chance to delimit a rectangle on the screen. The user is given a corner prompt which

he can use to indicate the top left-hand and lower right-hand corners of a rectangle. The

TOOLGETRECT returns this defined rectangle.

Instance Operations: none

TOOLDELAY

TOOLDELAY is simply an interface between WE and the smailtalk system class DELAY.

*Class Operations:

4q e freezing the application flow of control. The seconds: method takes an integer parameter.

Once given this parameter, TOOLDELAY causes all action to freeze for the speLified number

of seconds.

Instance Operations: none

TOOLSCROLLAGENT

TOOLSCROLLAGENT packages the vertical scrolling function provided by TOOLSCROLL (see

section 3.2.2). It is a wrapper which makes TOOLSCROLL easy to use within the Wrist/Mode/Agent

paradigm. TOOLSCROLLAGENT is an Agent itself; when it is invoked, it sends a series of scrollTo:

messages to a specified target object representing the contents of the window to which the scroll

bar is attached.

Class Operations:

. instance creation. The creation message is for: a Target mode: aMode drawOn: aRectangle

imageSize: anlnt. aTarget is the object that will be scrolled. aMode is the associated WE

mode. aRectangle defines the size of the window corresponding to aTarget. anlnt is the

amount (percent) of aTarget's contents which can fit in its associated window at one time.

31

je
N

* ' .-jV -\ . -. , V . - •Y ,, - , ,. . .• . . ,, .*- *- -

Instance Operations:

a invocation. Like all AGENTis, a ToOLSCROLLAGENT responds to an invoke message. Upon

invocation, a TOO LSCROLL AGENT passes control to its scroll bar (a TOOLSCROLL). A

TOOLSCROLLAGENT is invoked only when the mouse point is within 5 pixels of its target's

edge (reacts To:).

'32

%
1%

4

3.3 Database Construction

Traditionally, the word "database" connotes a large body of information organized in some fashion

that allows fast and specific access. WE's concept of a database is much the same at a high level,

but its implementation is quite unique and natural to the kind of system that WE is.

WE's database provides an organizational structure for fast and specific access to the informa-

tion which is a document. But further, it is a semantic network - a direct mapping of WE's visual

objects into database primitives. WE's database is its internal object-oriented view of its body of

information. The fundamental units or 'primitives' are nodes and arcs. These correspond directly

to the nodes and links which the user sees in Network Mode, but are not limited to that use.

At the upper level of the database are the structures. They are made up of the lower primitives

- nodes and arcs. Structures are similar to 'abstract data types' in procedural languages in that

application programmers do not have to concern themselves with the internals of a structure's

*implementation. A structure is an encapsulation of details. A programmer simply asks (by sending

a message) a structure to add a given node, delete a particular arc, etc. and the structure itself

maintains its cohesiveness during these adjustments. In WE, structures organize subsets (usually

overlapping) of the information in the database in constrained ways. Structures may share nodes,

* but not arcs. In this sense, structures partition the set of arcs in the database. One works with

visual structures in Network Mode and Tree Mode. Typically, structures correspond one-to-one

with Modes.

This section presents the classes which comprise the WE database; the lower level (Databasel.0

category) followed by the upper level (Structures catcgoiy). Thi: ;.;csentation is couched between

a section dealing with terminology clarification and a section covering the external (Unix) repre-

sentation of WE's database.

3.3.1 Database vs. Workspace

As discussed above, WE's internal view of its body of information is referred to as its 'database'.

From a WE user's point of view, the body of information comprising a document is called a

'workspace'. In WE version 1.0, 'database' and 'workspace' are two terms for the same body of

4 33

%,V

information. The distinction between WE's view of a document and a user's view of a document is

a necessary one; 'database' refers to the actual interconnections of database objects which represent

the document, whereas 'workspace' refers only to the user's conceptual idea of what that document

is. In future versions of WE, the database may grow to include many workspaces. Then, the

distinction will be more apparent.

3.3.2 Databasel.O

*' The classes in this category are the components of the lower level database. All the objects in the

- database are subclasses of DBOBJECT; they are Objects that have a unique numerical identifier.

*The following brief description explains in general how to access these objects and the information

associated with each; see the classes involved for more detailed discussion of the full range of

functions.

[qAn application wishing to access (read and/or update) the contents of a database begins with

an instance of WDATABASE. Such instances are created (typically) by test drivers or by 'changing'

- to a WDATABASE which is retrieved and reconstructed from an external file. An instantiation of

WDATABASE provides access to three high level support dictionaries:

1. A Dictionary of strurtures. All structures managed by the WE session are kept in this

dictionary. The p'ogranmer must know the name of a structure to access it. These structures

*" provide access to nodes and arcs.

2. A Dictionary of Dimensions. Dimensions might well have been called attributes. Nodes re-

spond to messages regarding their 'position' in a particular dimension. Entries in the dimen-

sion dictionary typically include "x" and "y" - numeric dimensions used to locate the node in

the plane, and "title" - a string valued dimension which locates the node in a name space. In

fact, DIMENSION is an abstract superclass of these typed dimensions, e.g. STRINGDIMENSION.

3. A Dictionary of Attributes. As nodes have position in various dimensions, so arcs have values

on attributes. These too are named.

A programmer can cr, oAe a database by creating an instance of WDATABASE. Then, he can

access the information in the database by looking up database objects in the three high level

34

I

dictionaries and using the methods from corresponding classes in the DatabaselO and StructuresI.-I

categories.

- DBOBJECT

DBOBJECT is the superclass of all objects in the database. It simply attaches a unique (for

all users) numerical identifier to all its instances. This allows DBOBJECTs created in one session

to be referred to and used in other sessions without ambiguity. All DBOBJECTS created from

information in an external file retain their original identifiers. DBOBJECTs do not know about the

database they belong to during a particular WE session.

Class Variables:

Counter - Counter insures the uniqueness of numerical identifiers. It is used and accessed only

by the system. (Integer)

Instance Variables:

uniqueld - the unique numerical identifier assigned to a database object.

Class Operations:

e instance creation. All subclasses (and therefore all database objects) inherit and use the

creation method implemented here (new).

Instance Operations:

* * access to the unique identifier. Access is provided by the message uniqueld.

DIMENSION

DIMENSIONS associate values with nodes. Nodes are positioned in an information space. The

DIMENSIONS in that space are of various kinds, each a subclass of DIMENSION. So, for instance, the

title of a node is, formally, the position of the node in a STRINGDIMENSION known as "title". A

NODE has a 'position' dictionary which keeps track of its individual values in the information space

0

35

...0" " '' X " ,",, ". ".,, ,, . '. .. ,-,,

'- .??.",'<.: ,',, - . *. "."..*- . -'.'. ,'--.:.,, ,. -,,& , , ,,- ,,.. , , ,,.,,.. ,, . . ,

and their corresponding Dimensions. Similarly, subclasses of DIMENSION keep a 'nodes' dictionary

which keeps track of all the nodes which have a value (position) defined in that particular dimension,

and the specific values themselves. These two dictionaries are redundant. Both are needed in

version 1.0 only to simplify the process of saving a document to an external file - otherwise, the

Dimension 'nodes' dictionary would be unnecessary.

Class Variables: none

Instance Variables:

*, nodes - a dictionary whose keys are nodes with positions in the dimension and whose values are

the specific values that these nodes take on in the dimension.

Class Operations:

" instance creation. All subclasses inherit and use the instance creation method (new) imple-

mented here.

" storage to and reconstruction from an external file. DIMENSIONs can be stored onto and

retrieved from the external file containing a saved database (see section 3.3.4).

Instance Operations:

* access to the nodes in this dimension, nodes returns the nodes dictionary (see above), nodes-

Between: low Value to: high Value returns a Set of nodes whose values lie between lowValue

and highValue (exclusive) in this dimension. nodesAt: a Value returns a Set of nodes whose

value is aVal in this dimension.

" insertion into the nodes dictionary. move: aNode to: aPosition places aNode into the nodes

dictionary with a position of aPosition in the dimension.

IDDIMENSION

An IDDIMENSION is a DIMENSION whose values will be file names. WE uses IDDIMENSIONS to

associate text files with particular nodes. The actual name of the external file containing a node's

text is its position in an IDDIMENSION.

4 36

4

I

Class Variables: none

Instance Variables: none

Class Operations: none except those inherited.

Instance Operations:

9 comparison. distanceFrom: valuel to: value2 returns a closeness rating specifying how close

the two given values are with respect to this dimension.

NUMERICDIMENSION

A NUMERICDIMENSION is a DIMENSION whose values are numbers. For example, WE stores a

nodes's x and y positions in NUMERICDIMENSIONs. There is a NUMERICDIMENSION for x positions

of nodes and one for y positions.

Class Variables: none

Instance Variables: none

Class Operations: none except those inherited.

Instance Operations:

e comparison. distance"'om: numl to: num2 returns a rating of the closeness of numi and

num2 with respect to this dimension. For NUMERICDIMENSIONS, this measurement is simple:

the closeness rating is (numl - num2).

* reconstruction from an external file. NUMERICDIMENSIONS can reconstuct themselves from

information listed at a certain point in the database's external file (see section 3.3.4).

STRINGDIMENSION

A STRINGDIMENSION is a DIMENSION whose values are strings. For example, WE uses a

* STRINGDIMENSION to hold names of nodes.

37

--:

Class Variables: none

Instance Variables: none

Class Operations: none except those inherited.

Instance Operations:

" comparison. distanceFrom: value1 to: value2 returns a rating specifying the closeness of

valuel and value2 with respect to this dimension. For STRINGDIMENSIONS, this measurement

is binary: The rating is 0 if the valuel and value2 strings are identical, and 1 if not.

" reconstruction from an external file. STRINGDIMENSIONS can reconstruct themselves from

%s. information listed in the external file for the database.

NODES

NODEs are the fundamental information unit in the database. They are the direct mapping

of the visual nodes which a WE user works with in Network Mode and Tree Mode. NODEs have

position in DIMENSIONS which define their location in the information space. A NODE'S positions

in various DIMENSIONS are kept organized in a 'position' dictionary. See figure 5 below for its

4.. structure. NODES are linked together into structures by arcs. A NODE keeps track of the arcs

attached to it through adjacency lists; each node knows the arcs coming into and going out of it.

The basic methods thus involve moving the node about in the information space, attaching

and detaching arcs, and answering inquiries about position. Note that positional information is

V duplicated in the current implementation of the database: each DIMENSION has a 'nodes' dictionary

associating nodes with their positions in the particular DIMENSION.

Class Variables: none

Instance Variables: (see figure 5 for structures of these dictionaries.)

* position a dictionary whose keys are DIMENSIONS and whose values are the node's positions in

Nthese DIMENSIONS. This dictionary only contains DIMENSIONS in which the node has a defined

position. (Dictionary)

* 38

a.2%

outArcs a dictionary whose keys are STR.UCTURES and whose values are the node's exiting arcs

which are part of a particular structure. (Dictionary)

* inArcs a dictionary whose keys are STRUCTURES and whose values are this node's entering arcs

which are part of a particular structure. (Dictionary)

NNode 'position' dictionary Node linArcs' and *outArcs' dictionaries

key:nio value key value

Stringoimiensiol 'first' WTrea Arcs belonging to
the WTrae

NumericDimeflslon 360 WNetwork Arcs belonging to
I the WNetwork

1WPath Arcs belonging to
0 * the WPath

Figure 5: The Dictionaries kept by a NODE

Class Operations:

e instance creation. NODES use the creation method inherited from DBOBJECT. but they also

do initialization of their instance variables upon creation.

e reconstruction from an external file. NODES can be reconstructed from information at a

* certnin point in the database's external file.

Instance Operations:

* * take on a position in a given DIMENSION. move To: aPouition in: a~limension (,lters a new

DIMENSION x position pair into the node's 'position' dictionary. The node's new parameter

in the information space is cross- referenced in the 'nodes' dictionary for aDimonsiion.

* 39

0L

%-4 % 4 ~=' V '

* answer inquiries about position. positionln: aDimension returns the node's position in the

* given DIMENSION, aDimension.

* addition of entering and/or exiting arcs. addlnArc: anArc inserts anArc into the 'inArcs'

dictionary. anArc knows what structure it belongs to - this information is needed for correct

insertion in the dictionary. Similarly, addOutArc: anArc inserts anArc into the 'outArcs'

dictionary. These methods are private - they are used by Arcs to keep node dictionaries

current.

* access to all the node's arcs belonging to a given structure. inArcsFor: aStructure returns a

collection of the arcs which enter this node and belong to the given STRUCTURE, aStructure.

Similarly, outArcsFor: aStructure returns a collection of the arcs which exit this node and

belong to aStructure.

Sa access to every arc associated with the node. inArcs returns a collection of all the arcs which

enter this node. Similarly, outArcs returns a collection of all the arcs which exit this node.

. removal of an arc from the node's adjacency lists. removelnArc: anArc disconnects anArc (an

entering Arc) from the node. The sender must disconnect anArc's other end and mend the

structure appropriately. Similarly, removeOutArc: anArc disconnects anArc (an exiting Arc)

from the node. These methods are private - they axe used by Arcs to keep node dictionaries

current.

e making a copy of itself. copy returns a copy of the node - a node which has the exact same
positions in the exact same DIMENSIONS as this node. copy does not make copies of text files

associated with this node.

e deletion. delete removes all trace of this node from the database - permanently.

ARcs

* ARCS are database objects which represent relationships between NODES. An ARC belongs to

a single, particular STRUCTURE. Thus, ARcs give the NODES they connect a place in a particular

STRUCTURE. ARCS can have attached ATTRIBUTES. ATTRIBUTES are database objects. They

* 40

,40

U.UP

are like DiMENSIONS in that ARCs may 'have a position' on an ATTRIBUTE. The values which

ARCs have in ATTRIBUTES are strings. For example, one ArRIuBUTE is the 'label' attribute which

represents the name (a string) of the ARC (the WE user can name arcs in Network Mode). An

arc's Attribute x y value pairs are kept in its 'attributes' dictionary. See figure 6 below for the

structure of this dictionary.

Class Variables: noie

Instance Variables:

from - tO' Nod(l rrii which the Arc originItLes. (Node)

to - the Node at which the Arc ends. (Node)

attributes - a dictionary whose keys are the attributes in which the arc has a position and whose

* values axe the positions themselves. (Dictionary)

structure the Structure owning the arc. (Structure)

Arcs *attributes' dictionary

key value
(an Attribute} (a 81ring)

an Attribute 'root'
labeled 'tree'

an Attribute *child'
9,, labeled 'tree'

• Figure 6: The Single Dictionary Kept by an ARC

a 41

. - S

1V

Class Operations:

e instance creation. newln: aStructure from: fNode to: tNode creates an arc originating from

->' node tNode and ending at node fNode and belonging to the structure aStructure.

. external file storage and retreival. Methods exist to store an arc on the external database file

and to reconstruct an arc from the information at a certain point in the external database

file.

Instance Operations:

e access to the arc's knowledge. from returns the node from which the arc originates. Similarly,

% to returns the node at which the arc ends. attribute: anAttribute returns the value associated

with anAttribute for this arc (this arc's position in anAttribute).

*:. * attachment of an attribute, attribute: anAttribute value: aValue associates anAttribute with

this arc and sets the arc's value in anAttribute to aValue.

ATTRIBUTE

ATTRIBUTES are database objects which only have meaning when associated with an arc. Arcs

have values in attributes. Attributes are named and respond to messages about the name. An

example of an attribute is the 'label' that links (arcs) have in the Network Mode - the arc's position

in this attribute is what a user thinks of as the link (arc) name.

Class Variables: none

* Instance Variables:
'.4

label the name of the attribute. (String) (Note to WE programmers - it is EXTREMELY confusing

to call the name of the attribute its label and to have a 'label' attribute - an attribute whose

* name is 'label')

Class Operations:

* 42

, instance creation. labeled: aString in: aDatabase creates a new Attribute named aString

belonging to the database aDatabase.

a storage to and retrieval from a file. Methods exist for storing an Attribute on the external

database file and for reconstructing an Attribute from information at a certain point in this

file.

Instance Operations:

" access to the attribute's knowledge. label returns the name of the attribute.

" changing the name. label: aString changes the name of the attribute to aString.

WDATABASE

, WDATABASE represents the database (WE's internal view of the document) and is also the

central point in the mapping between the database and the external database. A WDatabase

keeps three dictionaries which in total contain all database objects in the database. WE uses these

dictionaries as lookup tables when doing database operations. WDatabase also provides access to

a template 'empty database' which WE gives to its users as a 'clean slate' to start a document.

Class Variables: none

Instance Variables: (see figure 7 for the format of the three main dictionaries.)

structures - a dictionary which keeps track of all STRUCTURES in the database and their names.

(Dictionary)
0

dimensions - a dictionary which keeps track of all DIMENSIONs in the database and their names.

(Dictionary)

attributes - a dictionary which keeps track of all ATTRIBUTES in the database and their names.
0

(Dictionary)

dbTitle - the name of the database itself (user-given). (String)

043

' V

a.'.

0.,, ,- ,',, ,.,:':,..,,.,<°' ' '-.' .,.,% : '.".- .,..- , ,, '.',- ,,-' -,,.-: x , ,e

WDatabase 'structures' dictionary WDatabase 'dimensions' dictionary

key value key value
{a String) (a Structure) (a String) (a Dimension)

'net 219 ipaper' WNetwork 'x *NumoricDlmension

'tree one' WTree 'y NumerlcDimension

* title, String~lmension

W~atabase 'attrtbutes' dictionary

key value

(a String) (an Attribute)

'tree' an Attribute
labeled tree,

'label' an Attribute
labeled 'label'

%S

Figure 7: Thle rhree Dictionaries Kept by a WDATABASE

44

% %% "

% Vw

Class Operations:

* instance creation. emptyWS creates a database for an empty workspace. This empty

workspace is the clean slate with which a WE user begins a document (workspace). Its

database has an empty tree and an empty network. newNamed: title creates a new WDatabase

iiamed title. Tis creation method 1z oudy used when reconstructing a database from its ex:-

ternal file.

Instance Operations:

e access to the database's knowledge. attributes returns the dictionary containing all the at-
tributes in the database. dimensions returns the dictionary containing all the dimensions in

the database. structures returns the dictionary containing all the structures in the database.

dbTitle returns the name of the database. rename: dbName changes the database's name to

dbName.

e generation of an empty workspace. empty WS sets up and returns the framework for an dmpty

database which the WE user needs to begin a new workspace.

e storage on and reconstruction from a file. A WDatabase has the ability to store itself on

an external file and reconstruct itself from an external file (see also section 3.3.4). storeOn:

filename causes the database to store itself onto an external file by successively telling all

its objects (ATTRIBUTES, DIMENSIONS, and STRUCTURES) to store themselves. scanFrom:

* aFileStream causes the database to reconstruct itself by successively reconstructing its objects

and telling them to reconstruct themselves.
,'.

- 3.3.3 Structures

Classes in the Structures category form the framework for the upper level of the database. STRUC-

TURE is the superclass for all structures; it is a template on which structures are modeled. Access to

, the information contained in a structure is almost entirely provided in the subclasses. This allows

the subclasses to enforce the constraints which give them their character. Structures are simply

,.4a-.

a. 4

non-primitive database objects (still subclasses of DBOBJECT). If one thinks of the database as

a single graph, then a structure is a specific subgraph. Structures consist of a set of nodes and a

set of arcs which link elements of the node set. The default implementation keeps an explicit list

*. of nodes, but some subclasses do not. A structure knows the database it belongs to and its own

title. The standard set of subclasses used by WE consists of WTREE, WPATH, and WNETWORK.

Most subclasses either access nodes by following arcs from a head arc or by maintaining an

explicit node list. Every structure responds to a do: aBlock message which performs the aBlock

.''. code on every node in the structure. This way of gaining access to each individual node of a

structure is crucial for display: recall that in WE, every mode has an associated STRUCTURE

which is kept in its prinStructure instance variable. When a mode wants to derive its structure

from the database, it sends the do: aBlock message to its principle structure. The aBlock code

creates an appropriate AGENTI (really a customized subclass of AGENTI) for each node or other

DBOBJECT in the structure. It assigns the particular DBOBJECT (node, arc, etc.) as the agent's

subject, the mode that the structure belongs to as the agent's mode, and a created DRAWING1O

(a subdrawing of the mode's ROOTDRAWINGI0) as the agent's drawing. Once the collection of
agents corresponding to a structure is built up, the mode's drawing (ROOTDRAWING10) is sent

the display message which causes the drawing and all its subdrawings (corresponding to individual

agents) to be displayed on the screen.

For example, the WE Network Mode has a WNETWORK as its principl, structure. To derive

this network from the database, each node is accessed in turn via the do: aBlock message sent to

= the WNETWORK. For each node, a NETNODEAGENT1 (subclass of AGENT1) is created and for

each arc in each node's outArcs dictionary a NETLINKAGENT1 (subclass of AGENT1) is created.

In this way, agents are built up for each DBOBJECT in the WNETWORK structure. These agent's
drawings form a tree of drawings which are displayed by sending the display message to the Network

Mode's ROOTDRAWING10 kept in its drawing instance variable.

STRUCTURE

* STRUCTURES are abstract data types made up of nodes and arcs. All structures in the database

are subclasses of STRUCTURE. WE provides three kinds of structures: networks (WNETWORK),

-: ".paths (WPATH), and trees (WTREE). Refer to the following subsections and Figure 8 for specifics

* 46

r~~~w ~~w rw ~~~rr.L un _1 r a iW r Y a _ rt I u a-, W Wu. " Sr an I W1 IL" tiM Aan I3 anR W.. ,aa n an n anM an -An. wi .a n a aia nS . f 2

on these subclasses. Basic transformations (from one structure to another) are provided among

the standard subclasses. Copying methods are also provided.

STRUCTURE lays out the capabilities for its subclasses.

Class Variables: none

Instance Variables:

nodes - the set of nodes contained in the structure. Only WNetworks keep this explicit node list

(in the other subclasses, it is left empty). WNetworks need an explicit node list because their

nodes are not guaranteed to be all connected in some way by arcs; some (or all) nodes can be

loners that are only known about from the explicit node list. (Set)

_ title - the name of the structure. (String)
S

database - the database which the structure belongs to. (WDatabase)

Class Operations:

" instance creation. in: aDatabase creates a new Structure belonging to aDatabase.

v a" storage to and reconstruction from a file. Structures can store themselves on the external

database file and thus can also reconstruct themselves from the information at a certain point

in this file.

Instance Operations:

a access to the structure's knowledge. head returns a 'special' node (i.e. the 'root' node of a

tree) which is different depending on the specific structure. Most subclasses reimplement this

method. contains: aNode returns a boolean answer indicating whether or not aNode is in the

° structure, title returns the name of the structure. do: aBlock performs the aBlock code on

each node in the structure.

47

6 5 ng N

* transformation. Default methods exist to transform any subclass of STRUCTURE into a net-

work, a tree, or a path. WNETWORK, WTREE, and WPATH themselves usually reimplement

the transformation methods to take advantage of their specific knowledge to make these meth-

ods more efficient.

WPATH

A WPATH is a 'linked list' of nodes. A path is either empty or it has a first node; every node

but the last has a unique successor. By convention, the last node's successor is nil. The list is

implemented by keeping track of a 'head' arc which points from the last node to the first. If the

path is empty, there is no head arc - it is nil; if there is only one node in the path, then head is a

cyclic arc on this node. A path does not keep an explicit node list (see discussion of STRUCTURE

S- above). Instead, it depends on the fact that all nodes are connected - each node in a patn knows

the arcs leading to its adjacent nodes. For speed, a path keeps an explicit count of the number of

nodes it contains. See figure 8 for a picture of a generic WPath.

Class Variables: none

Instance Variables:
'_"-

head - the special arc pointing from the last node back to the first node. (Arcs)

size - the number of nodes in the path. (Integer)

Class Operations:

e instance creation. newFrom: aNode in: aDatabase creates a new WPath (for the database

* aDatabase) with aNode as its single Node.

Instance Operations:

* • access to the path's knowledge. head returns the first node in the path while tail returns the

last node. contains: aNode returns a boolean indicating whether or not the path contains

aNode. succOf: aNode returns the node that follows aNode on the path while predOf. aNode

* 48

. % .

IN-MN% .iPu

returns the node that precedes aNode on the path. isEmpty returns a boolean indicating

whether or not the path is empty (contains no nodes). nodeCount returns the number of

nodes in the path.

* growth and shrinkage, add: aNode adds aNode to the end of the path while detach: aNode

removes a-Node from the path. insert: newNode after: predNode puts newNode into the path

following predNode while insert: newNcde before: succNodc puts newNode into the path

before succNode.

. destruction. delete permanently removes the entire stucture from the database.

WNETWORK

A WNETWORK is a generic directed graph. It is a direct representation of the directed graph

a WE user creates and manipulates in Network Mode. Like all STRUCTURES, it consists of nodes

connected with arcs. A network node can remain unattached - a loner which has no entering or
-'' exiting arcs. Also, network nodes can be connected in a very general fashion: cyclic linksar

allowed (though not from a single node back to itself) and there is not a limit on the number of

arcs which can enter or exit a particular node. A WNETWORK supports basic graph operations

*' like adding and removing nodes and arcs. See figure 8 for a picture of a WNETWORK.

-Class Variables: none

Instance Variables:

label - an attribute in which all network arcs have a value. This specific attribute is defined to

"I hold the name of a network arc. (Attribute)

Class Operations:

* e instance creation. in: aDatabase creates a new empty network in the database, aDatabase.

49

Instance Operations:

" access to the WNetwork's knowledge. labelOn: anArc returns the name of anArc (its position

in the network attribute, label). reLabel: oldArc as: newName changes the name of oldArc

to newName. linksFrom: aNode returns a collection of the arcs exiting aNode while links To:

aNode returns a collection of the arcs entering aNode.

" operations on network nodes. add: aNode adds aNode to the network as an isolated node.

link: aNode to: bNode andCall: aString creates a new arc from aNode to bNode named

aString. detach: aNode removes all the arcs entering or exiting aNode (aNode remains in the

network as an isolated node).

" removal of arcs and nodes. remove: aNode removes aNode from the network and by implica-

tion removes all its entering and exiting Arcs. removeLink: anArc removes anArc from the

network and removeLinkFrom: fromNode to: toNode called: aString removes any Arcs named

aString which connect fromNode and toNode.

WTREE

A WTREE is a structure that imposes a strict node hierarchy. Visually, tree restrictions mean

-. that all nodes are involved in the structure; unlike WNETWORKS, there can be no 'loners'.

A tree is represented internally as shown in figure 8. Each arc has a position in a tree attribute

named 'tree'. The root arc is a cyclic arc on the root node. There is only one root arc. Arcs with

a tree attribute named 'child' link a parent to its first child. A 'sibling' arc links a node to its next

sibling. Each node, thus, has a single entering arc. It may have zero, one, or two exiting arcs.

The methods provide a full set of tree operations - insertions and deletions of various kinds as

* well as subtree rearrangement operations.

Class Variables:

Tree - the Attribute in which tree arcs have positions. These positions are strings - names indica-

tive of the arc's representative relationship (e.g. 'child', 'sibling', 'rootArc'). (Attribute)

50
0

5
o

%

0°

K head arc

chil46.

* WTree

%--

WNetwork ___________

- Legend

Node

Arc

Figure 8: WE STRUCTURES

S51

S

Instance Variables:

rootArc - the special arc which is cyclic on the root node - the head arc of the tree structure.

(Arc)

2Class Operations:

e instance creation. create: aNode in: aDatabase creates a new tree rooted at aNode in the

database aDatabase.

Instance Operations:

o access to the tree's knowledge. contains: aNode returns a boolean indicating whether or

not aNode is in the tree. isEmpty returns a boolean indicating whether or not the tree has

any nodes. node: relNode isAncestorOf: aNode returns a boolean indicating whether or not

* aNode is a descendant of relNode. childrenOf" aNode returns a collection of all aNode's

children. nextChild: aNode returns aNode's next sibling while prevChild: aNode returns

aNode's previous sibling. parentOf: aNode returns the parent of aNode. root returns the root
node. Finally, do: aBlock evaluates the code in aBlock for each node in the tree.

a insertion, deletion, and rearrangement of Nodes. insert: newNode asLastChildOf dad puts

newNode into the tree as the last child of dad. nodeMove: aNode after: predNode moves

newNode into the tree with predNode as its immediate younger sibling. subsume: younger to:

elder under: newParent inserts newParent into the tree at the place specified by considering

younger and elder as its end children. treeMove: aNode after: predNode moves aNode and all

its progeny to become predNode's elder sibling. deleteNode: aNode removes aNode from the

tree. delete Tree: relRoot removes relRoot and all its descendants from the tree.
P..-

@ grafting. Methods exist for grafting a given subtree onto the tree in a specified position.

WFIELD

A WFIELD is a special kind of structure (not a subclass of STRUCTURE) which is very different

from it's counterparts in the Structures category. A WFIELD is a utility for collecting DIMENSIONS

52
@

U .,

5:

into a single structure. WE uses a WFIELD to hold the set of dimensions it deals with. MODES

access this (single) subclass of WFIELD when they need quick access to a certain dimension. In the

current implementation, WFIELD has no variables or methods; it is simply an abstract superclass.

3.3.4 File Support

As discussed above, a WDATABASE can store itself into an external file. Databases save themselves

when WE users explicitly command a save. From a WE user's point of view, his workspace can

be saved as one big chunk under a single name. The user can use this name in the future to recall

the database into WE. In reality, however, a complete workspace is saved in a set of files. In the

UNIX directory where the workspace belongs, there is a directory xxxx.ws (where xxxx is the user-

given name of the workspace) which represents the workspace as a whole. This xxxx.ws directory

contains a SINGLE file xxxx.db which is the database. The xxxx.ws directory also contains a set

-' of .txt files each corresponding to a single node's text. A .txt file is created and saved for a node

when text is associated with it. Thus, there is no .txt file for a node which has no text.

A database is reconstructed from its external .db file when a WE user calls for it. .txt files

are kept permanently in external files and managed by WE through its Edit and Revise Modes -

.txt files are NOT part of the database in the most restrictive sense because they do not all reside

internally during a session.

WE's external file support of workspaces is essential to the usefulness of the system.

.o,

0

553 .5

~% %

5~~%

"V

4 Acknowledgments

Portions of this research were supported by the National Science Foundation (Grant # IRI-

8519517), the Army Research Institute (Contract # MDA903-86-C-0345), and the International

Business Machines Corporation (Contract # SUR-423). The project was led by John B. Smith

and included faculty researchers Stephen F. Weiss, Jay D. Bolter, and Marcy Lansman. Gordon

J. Ferguson was chief architect of the system. Graduate students who contributed to the coding

effort included Paulette Bush, Yen-Ping Shan, Valerie Kierulf, and Katie Clapp. Greg Berg and

Irene Jenkins contributed to the cognitive science aspects of this project. Oliver Steele developed

the protocol tracker and replay program. Paulette Bush was the principal author of this report.

%

I54

'..

"V.

5 Appendices

5.1 Roaming: Traversing an Infinite Drawing Space

The Roaming capability in WE allows a WE user to navigate through visual structures that are

too large to fit entirely within a Mode's window boundaries. When Roaming is used, a small

d. additional window appears in the current Mode. This window represents an 'infinite' drawing

surface. A structure's placement in this world is represented by a small replica inside the additional

window. A WE user can specify the section of a structure which he wants to appear in the current

Mode window through simple, natural operations. The design details of the Roaming capability

are presented in the forthcoming documentation: A Roaming Package for the Writing Project, by

Valerie Kierulf and Gordon Ferguson.

5.2 Tracking: Recording and Replaying a WE session

The Tracking capability in WE enables the system to collect a transcript of a WE session which

can be later analyzed and parsed using a WE grammar. Information gained from parses of WE

transcripts for different kinds of writers can support and/or point out inconsistencies in the theory

behind WE. These transcripts can also be used to visually 'play back' the WE session in WE. For

design details of this tracking capability, see the forthcoming documentation: The WE Transcript

and Replay Mechanisms: A Programmer's Guide, by Oliver Steele.

* 6 Reference List

Clapp, K. N., & von Borries, H. (1987). Programming in Smalltalk. Chapel Hill, NC: UNC

-. Department of Computer Science Technical Report TR87-023.
0
2; Cox, B. J. (1986). Object Oriented Programming. Addison Wesley.

Goldberg, A., & Robson, D. (1983). Smalltalk-80: The Language and its Implementation.

Addison Wesley.

55

S%

MA JIM ana ' '~ ' ~t1 JM.., I-l x~ t RE I 5 N WVWV UK, r.. WI% sqw P. nsn W.94

Shan, Y., Smith, J. B., & Ferguson, G. J. Software Development in an Academic Research

Setting: To Prototype or to Reprototype?. Chapel Hill, NC: UNC Department of Computer Science

Technical Report TR88-033.

Smith, J. B., & Lansman, M. (1988). A Cognitive Basis for a Computer Writing Environment.

Chapel Hill, NC: UNC Department of Computer Science Technical Report TR87-032.

Smith, J. B. et al. (1987). WE - A writing environment for professionals. National Computer

Conference, 725-736.

5,5

41,

.4

L, 0

5-5

'

